Loading [Contrib]/a11y/accessibility-menu.js

Jumat, 27 Agustus 2010

Prime Number problem (1)

Posted On 08.47 by Ikhsanul Halikin 0 komentar

Let a > b > c > d are natural numbers and ac + bd = (b + d + a – c) (b + d – a +c). prove that ab + cd isn’t prime number ! Solutuon : to prove this problem we wiil use contradiction. we have : a > b its meaning (a-b) > 0 c > d its meaning (c-d) > 0 so, (a-b) (c-d) = (ac-ad-bc+bd) > 0 so that (ac+bd) > (ad + bc) ...........(2) similarly, for a>d and b> c we get (ab+cd) > (ac + bd) .........(3) from (2) and (3) we get : (ab+cd) > (ac + bd) > (ad + bc) from problem : ac + bd = (b + d + a – c) (b + d – a +c) = b2+bd–ab+bc+bd+d2-ad+cd +ab+ad-a2+ac-bc-cd+ac-c2 = b2+2bd+d2-a2+2ac-c2 a2-ac+c2 = b2+bd+d2 see that : (ab+cd) (ad+bc) = a2bd+ab2c+acd2+bc2d ...



Design by Ikhsanul Halikin